①從底層做個大模型有兩個關(guān)鍵點:一個是算力,一個是數(shù)據(jù)質(zhì)量;算力的大小直接限制參數(shù)的大小,數(shù)據(jù)的質(zhì)量決定了模型的好壞。 ②先問基于2000億開源數(shù)據(jù)集、百萬級專業(yè)人工數(shù)據(jù)集,具有數(shù)據(jù)可溯源、實時同步、可視化分析、多參數(shù)版本特點,同時支持用戶本地化部署。
《科創(chuàng)板日報》6月27日訊(記者 徐賜豪) 今年以來,百度、360、阿里巴巴、科大訊飛等互聯(lián)網(wǎng)巨頭相繼發(fā)布自己的通用大模型,儼然形成了“千模大戰(zhàn)”局勢。
此外,更多垂直行業(yè)企業(yè)也加入了這場“狂熱”。日前,在中國江寧2023元宇宙產(chǎn)業(yè)·人才高峰論壇暨AIGC發(fā)展大會上,清博智能科技有限公司發(fā)布了針對融媒體行業(yè)的首個實時接入全網(wǎng)結(jié)構(gòu)化數(shù)據(jù)的大語言模型——“先問”。
本期《元宇宙之約》我們對話了清博智能技術(shù)副總裁王歡。其在大數(shù)據(jù)與AI領(lǐng)域有十多年的從業(yè)經(jīng)驗,其負(fù)責(zé)設(shè)計與研發(fā)的清博輿情平臺服務(wù)數(shù)十萬用戶,并且在一站式自動機器學(xué)習(xí)平臺、智能對話平臺的構(gòu)建與研發(fā)有豐富的實踐經(jīng)驗。
他透露,先問核心團(tuán)隊有10多人,主要來自包括來自清華、中科大、合工大、華盛頓大學(xué)等國內(nèi)外知名高校的技術(shù)人員。先問基于2000億開源數(shù)據(jù)集、百萬級專業(yè)人工數(shù)據(jù)集,具有數(shù)據(jù)可溯源、實時同步、可視化分析、多參數(shù)版本特點,同時支持用戶本地化部署。
在他看來,從底層做個大模型有兩個關(guān)鍵點:一個是算力,一個是數(shù)據(jù)質(zhì)量;算力的大小直接限制參數(shù)的大小,數(shù)據(jù)的質(zhì)量決定了模型的好壞。
我們注意到先問大模型提到數(shù)據(jù)可溯源,這個怎么來理解?
王歡:“先問”給了用戶“溯源”的權(quán)利。對于AI給出的每一句回答,用戶都可以單獨查詢它的來源。對于需要使用AI來產(chǎn)出正式內(nèi)容的用戶,這種方式雖然會多花些時間,但能核實真實度。
在模型回答問題的實時性上,先問跟ChatGPT的不同在哪里?
王歡:比如你問ChatGPT對于埃隆馬斯克最近訪華怎么看,因為它是基于2018年那次訪問回答的,這個就不準(zhǔn)確。當(dāng)然ChatGPT可以基于插件來回答。
我們跟ChatGPT最大的差別是,我們的數(shù)據(jù)是結(jié)構(gòu)化的。我知道哪些媒體的權(quán)重高,哪些媒體數(shù)據(jù)的質(zhì)量更高。以及這些內(nèi)容是否符合社會價值觀,包括正負(fù)面信息都可以被篩選出來。底層數(shù)據(jù)都會根據(jù)我們制定的200多個數(shù)據(jù)標(biāo)簽分類好。
我們基于這些結(jié)構(gòu)化的數(shù)據(jù)就可以很好召回用戶想要的數(shù)據(jù)。然后再結(jié)合模型的能力,實時生成比較好的回答。這就是先問跟ChatGPT的最大不同。
結(jié)構(gòu)化數(shù)據(jù)和非結(jié)構(gòu)化數(shù)據(jù)有何不同?
王歡:非結(jié)構(gòu)化數(shù)據(jù),比如說你現(xiàn)在訪問的網(wǎng)頁,你只看正文部分它就是文本,它的內(nèi)容就是原始正文。搜素引擎看的就是原始正文,給它訓(xùn)練的數(shù)據(jù)也是原始正文。
結(jié)構(gòu)化數(shù)據(jù)不僅知道它的原始正文信息,還對這些信息做了結(jié)構(gòu)化處理,包括發(fā)布提及的地域信息、文本分詞信息、內(nèi)容分類以及正負(fù)面;另外還有發(fā)布的作者信息,比如發(fā)布媒體的畫像、權(quán)重等信息。這樣你可以找回一些質(zhì)量更高或者可信度更高的信息。
先問如何兼顧模型的回答與人類價值觀相對齊兩個問題?
王歡:第一,本身數(shù)據(jù)源就很重要,因為國內(nèi)的數(shù)據(jù)源基本上都是經(jīng)過“審核”符合社會價值觀的。
第二,我們本身是結(jié)構(gòu)化數(shù)據(jù),對數(shù)據(jù)已經(jīng)打了許多標(biāo)簽,對數(shù)據(jù)是有畫像的。比如說人民日報、央視的數(shù)據(jù)內(nèi)容肯定沒有問題,沒有依據(jù)的媒體的可能就不會被召回,這是數(shù)據(jù)層面。
第三,我們對模型本身做了一些無害訓(xùn)練,以避免它去回答這些違反價值觀的提問,在“先問”平臺上,我們也前置了有害問題檢測模型,進(jìn)一步防止模型被誘導(dǎo)輸出有害內(nèi)容。
如何理解多模態(tài)大模型?
王歡:現(xiàn)在“先問”可以回答的主要還是文本,但以后其實還有圖像、視頻、音頻等回答模式。多模態(tài)的做法主要有兩種:一種是大語言模型只做語言,能理解你的需求,比如你需要畫一張畫,可以調(diào)用模型給你生成,目前這種方式比較多;另外一種就是融合性,這種模型的數(shù)據(jù)本身既包含了文本,又包含圖像、音頻、視頻,這種生成是端到端的模式。
做好大模型的關(guān)鍵在于算力和數(shù)據(jù)質(zhì)量
清博智能是什么時候開始做大模型的?
王歡:在Transformer出來的時候我們就開始做生成式的語言模型了。因為我們內(nèi)部也要寫報告,幾百人團(tuán)隊的人力成本比較高,我們就想機器來寫。在ChatGPT火爆之前,我們嘗試了很多模型,但是效果不太好,一個是數(shù)據(jù)的問題,一個就是訓(xùn)練方法不夠好,參數(shù)也不夠多,生成的報告可讀性不高。
ChatGPT大模型出來以后,我們發(fā)現(xiàn)它擅長寫文章,然后就采用這種模式,基于開源的基座模型結(jié)合自己的高質(zhì)量報告數(shù)據(jù),以及數(shù)據(jù)分析引擎,開發(fā)了“先問”,并且效果好了很多。
在做大模型過程中,你們團(tuán)隊遇到哪些難點?又是如何克服困難的?
王歡:一個是數(shù)據(jù)本身,因為是結(jié)構(gòu)化數(shù)據(jù),怎樣召回這些數(shù)據(jù)是一個大的問題。我們要有自己的獨特算法,讓模型召回的數(shù)據(jù)質(zhì)量更高。另外,它上下文的記憶長度是有限的,在有限長度之內(nèi)給模型提供哪些數(shù)據(jù),這是我們需要考慮的問題。此外就是如何讓模型理解上下文,特別是在多輪交互方面是很難的。
為了攻克這些難點,我們除了做大模型外,也做了一些小模型。數(shù)據(jù)方面比如排序模型、指數(shù)模型等,基于這些小模型讓召回的數(shù)據(jù)更加可靠。另外我們在大模型的基礎(chǔ)上,結(jié)合大量人工標(biāo)注的數(shù)據(jù)來訓(xùn)練模型對用戶意圖的理解能力,更好地理解用戶的提問意圖。
如果是100分制的話,“先問”可以達(dá)到七八十分,目前還在持續(xù)優(yōu)化中。
回過頭來看,做好大模型的關(guān)鍵點在哪里?
王歡:關(guān)鍵點有兩個:一個就是算力的大小,一個就是數(shù)據(jù)質(zhì)量的好壞。因為每家的底層算法其實都差不多。算力大小直接限制了參數(shù)的大小,數(shù)據(jù)的質(zhì)量決定了模型的好壞。
對于做大模型來說,成本結(jié)構(gòu)是怎樣的?
王歡:百分之六、七?十的成本花在算力上,人工、算法的成本比較低,其他成本就是數(shù)據(jù)標(biāo)注與處理的成本,這個百分之二十左右。
訓(xùn)練基座模型的成本很高,它本身需要上萬億Token的量級的數(shù)據(jù),這個數(shù)據(jù)集的構(gòu)建成本很高。但是對于垂直企業(yè)來說,比如說只是做醫(yī)療業(yè)務(wù)的,它的基座模型別人已經(jīng)訓(xùn)練好了,不用萬億的Token來訓(xùn)練模型,這個訓(xùn)練成本就低了很多。